Patterns Relevant to the Temporal Data-Context of an Alarm of Interest

نویسندگان

  • Savo Kordic
  • Peng Lam
  • Jitian Xiao
  • Huaizhong Li
چکیده

The productivity of chemical plants and petroleum refineries depends on the performance of alarm systems. Alarm history collected from distributed control systems (DCS) provides useful information about past plant alarm system performance. However, the discovery of patterns and relationships from such data can be very difficult and costly. Due to various factors such as a high volume of alarm data (especially during plant upsets), huge amounts of nuisance alarms, and very large numbers of individual alarm tags, manual identification and analysis of alarm logs is usually a labor-intensive and time-consuming task. This chapter describes a data mining approach for analyzing alarm logs in a chemical plant. The main idea of the approach is to investigate dependencies between alarms effectively by considering the temporal context and time intervals between different alarm types, and then employing a data mining technique capable of discovering patterns associated with these time intervals. A prototype has been implemented to allow an active exploration of the alarm grouping data space relevant to the tags of interest. DOI: 10.4018/978-1-60566-908-3.ch002

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

An efficient SOM-based pre-processing to improve the discovery of frequent patterns in alarm logs

We describe a pre-processing technique for mining a telecommunication alarm log for frequent temporal patterns. The method consists in extracting relevant subsets from the initial log with the aim of discovering frequent patterns more accurately. In a first step, the alarm types presenting the same temporal behaviour are clustered with a self organizing map. Then, log areas which are rich in al...

متن کامل

Understanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City

Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Patterns of Politeness in Teacher-Student Interaction: Investigating an Academic Context

Patterns of Politeness in Teacher-Student Interaction: Investigating an Academic Context AbstractThis study investigated politeness strategies used in instructor-student relationships, in an academic environment. To conduct the study, four university classes with different instructors were randomly selected, observed and analyzed. Brown and Levinson’s theory of politeness was drawn on as the an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016